Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Inverse and Ill-Posed Problems ; 2023.
Article in English | Scopus | ID: covidwho-2298210

ABSTRACT

The problem of identification of unknown epidemiological parameters (contagiosity, the initial number of infected individuals, probability of being tested) of an agent-based model of COVID-19 spread in Novosibirsk region is solved and analyzed. The first stage of modeling involves data analysis based on the machine learning approach that allows one to determine correlated datasets of performed PCR tests and number of daily diagnoses and detect some features (seasonality, stationarity, data correlation) to be used for COVID-19 spread modeling. At the second stage, the unknown model parameters that depend on the date of introducing of containment measures are calibrated with the usage of additional measurements such as the number of daily diagnosed and tested people using PCR, their daily mortality rate and other statistical information about the disease. The calibration is based on minimization of the misfit function for daily diagnosed data. The OPTUNA optimization framework with tree-structured Parzen estimator and covariance matrix adaptation evolution strategy is used to minimize the misfit function. Due to ill-posedness of identification problem, the identifiability analysis is carried out to construct the regularization algorithm. At the third stage, the identified parameters of COVID-19 for Novosibirsk region and different scenarios of COVID-19 spread are analyzed in relation to introduced quarantine measures. This kind of modeling can be used to select effective anti-pandemic programs. © 2023 Walter de Gruyter GmbH, Berlin/Boston 2023.

2.
Comput Methods Programs Biomed ; 224: 107029, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936219

ABSTRACT

BACKGROUND: In Italy, the administration of COVID-19 vaccines began in late 2020. In the early stages, the number of available doses was limited. To maximize the effectiveness of the vaccine campaign, the national health agency assigned priority access to at-risk individuals, such as health care workers and the elderly. Current vaccination campaign strategies do not take full advantage of the latest mathematical models, which capture many subtle nuances, allowing different territorial situations to be analyzed aiming to make context-specific decisions. OBJECTIVES: The main objective is the definition of an agent-based model using open data and scientific literature to assess and optimize the impact of vaccine campaigns for an Italian region. Specifically, the aim is twofold: (i) estimate the reduction in the number of infections and deaths attributable to vaccines, and (ii) assess the performances of alternative vaccine allocation strategies. METHODS: The COVID-19 Agent-based simulator Covasim has been employed to build an agent-based model by considering the Lombardy region as case study. The model has been tailored by leveraging open data and knowledge from the scientific literature. Dynamic mobility restrictions and the presence of Variant of Concern have been explicitly represented. Free parameters have been calibrated using the grid search methodology. RESULTS: The model mimics the COVID-19 wave that hit Lombardy from September 2020 to April 2021. It suggests that 168,492 cumulative infections 2,990 cumulative deaths have been avoided due to the vaccination campaign in Lombardy from January 1 to April 30, 2021. Without vaccines, the number of deaths would have been 66% greater in the 80-89 age group and 114% greater for those over 90. The best vaccine allocation strategy depends on the goal. To minimize infections, the best policy is related to dose availability. If at least 1/3 of the population can be covered in 4 months, targeting at-risk individuals and the elderly first is recommended; otherwise, the youngest people should be vaccinated first. To minimize overall deaths, priority is best given to at-risk groups and the elderly in all scenarios. CONCLUSIONS: This work proposes a methodological approach that leverages open data and scientific literature to build a model of COVID-19 capable of assessing and optimizing the impact of vaccine campaigns. This methodology can help national institutions to design regional mathematical models that can support pandemic-related decision-making processes.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Immunization Programs , Pandemics/prevention & control , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL